Skip to contents

Draw a KM survival map

Usage

Surplot(results, meta, optK = 2)

Arguments

results

The results after clustering

meta

The clinical data downloaded from TCGA

optK

The optimal K

Value

A figure

Examples

data(results)
data(meta)
maxK = 6
Kvec = 2:maxK
x1 = 0.1; x2 = 0.9 # threshold defining the intermediate sub-interval
PAC = rep(NA,length(Kvec))
names(PAC) = paste("K=",Kvec,sep="") # from 2 to maxK
for(i in Kvec){
 M = results[[i]]$consensusMatrix
 Fn = ecdf(M[lower.tri(M)])
 PAC[i-1] = Fn(x2) - Fn(x1)
}
optK = Kvec[which.min(PAC)]
Surplot(results,meta,optK=3)