Cluster of cluster
Cluster_of_cluster.Rd
ClusterofCluster is a multi-method based on the R package "ConsensusClusterPlus".
Usage
Cluster_of_cluster(
mRNAexp,
miRNAexp,
lncRNAexp,
methylation,
maxK = 6,
reps = 50,
pItem = 0.8,
pFeature = 1,
clusterAlg = "hc",
distance = "pearson",
innerLinkage = "complete",
seed = 1262118388.71279,
plot = "pdf"
)
Arguments
- mRNAexp
A matrix of mRNA expression
- miRNAexp
A matrix of miRNA expression
- lncRNAexp
A matrix of lncRNA expression
- maxK
integer value. maximum cluster number for Consensus Clustering Algorithm to evaluate.
- reps
integer value. number of subsamples(in other words, The iteration number of each cluster number)
- pItem
Please refer to the "ConsensusClusterPlus" package for detailed information.
- pFeature
Please refer to the "ConsensusClusterPlus" package for detailed information.
- clusterAlg
character value. cluster algorithm. 'hc' heirarchical (hclust), 'pam' for paritioning around medoids, 'km' for k-means upon data matrix, 'kmdist' for k-means upon distance matrices (former km option), or a function that returns a clustering.
- distance
character value. 'pearson': (1 - Pearson correlation), 'spearman' (1 - Spearman correlation), 'euclidean', 'binary', 'maximum', 'canberra', 'minkowski" or custom distance function.
- innerLinkage
Please refer to the "ConsensusClusterPlus" package for detailed information.
- seed
optional numerical value. sets random seed for reproducible results.
- plot
Please refer to the "ConsensusClusterPlus" package for detailed information.
Value
A list of length maxK. Each element is a list containing consensusMatrix (numerical matrix), consensusTree (hclust), consensusClass (consensus class asssignments).
Examples
data(mRNAexp)
data(miRNAexp)
data(lncRNAexp)
data(methylation)
mRNAexp=data.filter(mRNAexp,percentage=0.6)
miRNAexp=data.filter(miRNAexp,percentage=0.6)
lncRNAexp=data.filter(lncRNAexp,percentage=0.6)
mRNAexp[mRNAexp==0]<-NA
miRNAexp[miRNAexp==0]<-NA
lncRNAexp[lncRNAexp==0]<-NA
mRNAexp<-as.matrix(mRNAexp)
miRNAexp<-as.matrix(miRNAexp)
lncRNAexp<-as.matrix(lncRNAexp)
mRNAexp=data.imputation(mRNAexp,fun="knn")
miRNAexp=data.imputation(miRNAexp,fun="knn")
lncRNAexp=data.imputation(lncRNAexp,fun="knn")
results = Cluster_of_cluster(mRNAexp,miRNAexp,lncRNAexp,methylation,maxK=6,reps=50,pItem=0.8,pFeature=1,clusterAlg="hc",distance="pearson",innerLinkage="complete",seed=1262118388.71279,plot="pdf")
#> end fraction
#> clustered
#> clustered
#> clustered
#> clustered
#> clustered
#> end fraction
#> clustered
#> clustered
#> clustered
#> clustered
#> clustered
#> end fraction
#> clustered
#> clustered
#> clustered
#> clustered
#> clustered
#> end fraction
#> clustered
#> clustered
#> clustered
#> clustered
#> clustered
#> end fraction
#> clustered
#> clustered
#> clustered
#> clustered
#> clustered